在计算机视觉中,对现实世界图像的自我监督,类别不足的分割是一个具有挑战性的开放问题。在这里,我们通过基于Spelke对象的认知科学概念来展示如何从运动自学学习中学习静态分组先验:一组可以一起移动的物理内容。我们介绍了兴奋性抑制段提取网络(EISEN),该网络学会从基于运动的训练信号中提取成对的亲和力图,以供静态场景。然后,艾森使用新颖的图形传播和竞争网络从亲和力产生细分市场。在训练过程中,进行相关运动的对象(例如机器人臂和移动的对象)被引导过程解耦:Eisen解释了它已经学会了细分的对象的运动。我们表明,艾森(Eisen)在挑战合成和现实世界的机器人数据集上进行了自我监督的图像分割方面取得了重大改进。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
眼科图像和衍生物,例如视网膜神经纤维层(RNFL)厚度图对于检测和监测眼科疾病至关重要(例如,青光眼)。对于计算机辅助诊断眼疾病,关键技术是自动从眼科图像中提取有意义的特征,这些特征可以揭示与功能视觉丧失相关的生物标志物(例如RNFL变薄模式)。然而,将结构性视网膜损伤与人类视力丧失联系起来的眼科图像的表示,主要是由于患者之间的解剖学变化很大。在存在图像伪像的情况下,这项任务变得更加具有挑战性,由于图像采集和自动细分,这很常见。在本文中,我们提出了一个耐伪造的无监督的学习框架,该框架称为眼科图像的学习表示。 Eyelearn具有一个伪影校正模块,可以学习可以最好地预测无伪影眼镜图像的表示形式。此外,Eyelearn采用聚类引导的对比度学习策略,以明确捕获内部和间形的亲和力。在训练过程中,图像在簇中动态组织,以形成对比样品,其中鼓励在相同或不同的簇中分别学习相似或不同的表示形式。为了评估包冰者,我们使用青光眼患者的现实世界眼科摄影图数据集使用学习的表示形式进行视野预测和青光眼检测。广泛的实验和与最先进方法的比较验证了眼球从眼科图像中学习最佳特征表示的有效性。
translated by 谷歌翻译
我们提出了Metricbert,这是一个基于BERT的模型,该模型学会了以明确的相似性度量嵌入文本,同时遵守``传统''蒙面语言任务。我们专注于学习相似之处的下游任务,以表明公制表现优于最先进的替代方案,有时要大幅度。我们对我们的方法及其不同的变体进行了广泛的评估,这表明我们的训练目标对传统的对比损失,标准余弦相似性目标和其他六个基线非常有益。作为另一个贡献,我们发布了视频游戏描述的数据集,以及由域专家制作的一系列相似性注释。
translated by 谷歌翻译
在本文中,我们得出了一种新方法来确定数据集的共享特征,通过采用联合非负矩阵分解并分析所得因素化。我们的方法使用两个数据集矩阵的联合分解$ x_1,x_2 $中的非负矩阵$ x_1 = as_1 = as_1,x_2 = as_2 $得出一个相似的度量,以确定$ x_1的共享基础的良好,x_1,x_2 $近似于每个dataset。我们还提出了基于此方法和学习分解的数据集距离度量。我们的方法能够成功地在图像和文本数据集中成功身份差异。潜在的应用包括分类,检测窃或其他操纵以及数据集之间的学习关系。
translated by 谷歌翻译
通过制造不精确和装置随机性来阻碍用于储存神经晶体系统中重量的模拟抗性状态,限制突触重量的精度。通过使用自旋转移扭矩磁阻随机接入存储器(STT-MRAM)的二进制状态的随机切换来模拟模拟行为来解决该挑战。然而,基于STT-MRAM的先前方法以异步方式操作,这难以通过实验实施。本文提出了一种具有时钟电路的同步尖峰神经网络系统,其执行无监督的学习利用STT-MRAM的随机切换。所提出的系统使单层网络能够在MNIST数据集上实现90%的推理准确性。
translated by 谷歌翻译
我们介绍了具有磁隧道结(MTJ)突触的神经形态网络的第一个实验证明,其通过矢量矩阵乘法进行图像识别。我们还模拟了执行Mnist手写数字识别的大型MTJ网络,展示MTJ交叉栏可以匹配映射器精度,同时提供更高的精度,稳定性和耐久性。
translated by 谷歌翻译
在神经形态计算中,人工突触提供了一种基于来自神经元的输入来设置的多重导电状态,类似于大脑。可能需要超出多重权重的突触的附加属性,并且可以取决于应用程序,需要需要从相同材料生成不同的突触行为。这里,我们基于使用磁隧道结和磁畴壁的磁性材料测量人造突触。通过在单个磁隧道结下面的畴壁轨道中制造光刻槽口,我们实现了4-5个稳定的电阻状态,可以使用自旋轨道扭矩电气可重复控制。我们分析几何形状对突触行为的影响,表明梯形装置具有高可控性的不对称性重量,而直线装置具有较高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中以显示特定于应用程序突触函数的有用性。实施应用于流式的时尚 - MNIST数据的人工神经网络,我们表明梯形磁突出可以用作高效在线学习的元塑功能。为CiFar-100图像识别实施卷积神经网络,我们表明直流突触由于其电阻水平的稳定性而达到近乎理想的推理精度。这项工作显示多重磁突触是神经形态计算的可行技术,并为新兴人工突触技术提供设计指南。
translated by 谷歌翻译
概率性电路(PC)是一类允许高效,通常是线性时间,诸如边缘的查询的验证和最可能的解释(MPE)的概率。然而,对于许多决策问题是核心的边缘地图仍然是对PC的硬质查询,除非它们满足高度限制性的结构约束。在本文中,我们开发了一种修剪算法,其删除与边缘地图查询无关的PC的部分,在保持正确的解决方案的同时缩小PC。这种修剪技术如此有效,我们能够完全基于迭代地改变电路构建边缘地图求解器 - 无需搜索。我们经验展示了我们对现实世界数据集的方法的功效。
translated by 谷歌翻译
由于它们在元素之间代表复杂互动的能力,变压器已成为许多应用中的选择方法。然而,将变压器架构扩展到非顺序数据,例如分子,并使其对小型数据集的训练仍然是一个挑战。在这项工作中,我们引入了一种用于分子性能预测的基于变压器的架构,其能够捕获分子的几何形状。我们通过分子几何形状的初始编码来修改经典位置编码器,以及学习的门控自我关注机制。我们进一步提出了一种增强方案,用于避免通过过次分辨率的架构引起的过度拟合的分子数据。所提出的框架优于最先进的方法,同时仅基于纯机器学习,即,即该方法不包含量子化学的域知识,并且在成对原子距离旁边没有使用延伸的几何输入。
translated by 谷歌翻译